Leveraging Task-Parallelism in Energy-Efficient ILU Preconditioners
نویسندگان
چکیده
منابع مشابه
ILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms
In this paper, an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms. We use different drop tolerance parameters to compute the preconditioners. To study the effect of such a dropping on the quality of the ILU ...
متن کاملOn Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators
The application of the finite element method for the numerical solution of partial differential equations naturally leads tolarge systems of linear equations represented by a sparse system matrix A and right hand side b. These systems are commonly solved using iterative solvers, particularly Krylov subspace methods, which are typically accelerated using preconditioners to obtain good convergenc...
متن کاملFine-grained Parallel ILU Preconditioners with Fill-ins for Multi-core CPUs and GPUs
Numerical simulation and its huge computational demands require a close coupling between efficient mathematical methods and their hardware-aware implementation on emerging and highly parallel computing platforms. The paradigm shift towards manycore parallelism not only offers a high potential of computing capabilities but also comes up with urgent challenges in designing scalable, portable, and...
متن کاملApproximate and Incomplete Factorizations
In this chapter, we give a brief overview of a particular class of preconditioners known as incomplete factorizations. They can be thought of as approximating the exact LU factorization of a given matrix A (e.g. computed via Gaussian elimination) by disallowing certain ll-ins. As opposed to other PDE-based preconditioners such as multigrid and domain decomposition, this class of preconditioners...
متن کاملParallel Multilevel Block ILU Preconditioning Techniques for Large Sparse Linear Systems
We present a class of parallel preconditioning strategies built on a multilevel block incomplete LU (ILU) factorization technique to solve large sparse linear systems on distributed memory parallel computers. The preconditioners are constructed by using the concept of block independent sets. Two algorithms for constructing block independent sets of a distributed sparse matrix are proposed. We c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012